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Mathematical Background and Recall

Topic of the course

Headline
▶ Mathematical background : Convex sets and derivatives.
▶ Convex function and their properties.
▶ What is a convex optimization problem ?
▶ Algorithms for convex optimization.
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Mathematical Background and Recall

Some references

Linear Algebra
▶ K.B Petersen, M.S Pedersen, The Matrix Cookbook,2012.

Available at : http ://matrixcookbook.com

Convex Optimization
▶ Stephen Boyd & Lieven Vandenberghe, Convex Optimization,

Cambridge University Press, 2014
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Mathematical Background and Recall

Norms
Given x, y ∈ Rn, the inner product is given by :

⟨x, y⟩ = xT y =
n∑

i=1
xiyi.

The inner product of x with itself is called the square of the norm of x

⟨x, x⟩ = ∥x∥2.

Definition
Let E be a R-vector space, then the application ∥.∥ is said to be a norm
if for all u, v ∈ E and λ ∈ R

1. (positive) ∥u∥ ≥ 0 ,
2. (definite) ∥u∥ = 0 ⇐⇒ u = 0,
3. (scalability) ∥λu∥ = |λ|∥u∥,
4. (triangle inequality) ∥u + v∥ ≤ ∥u∥ + ∥v∥.
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Mathematical Background and Recall

Norms

The norm can be seen as distance between two vectors x, y in the same
vector space

dist(x, y) = ∥x − y∥.

Example of usual norms :
▶ ∥x∥1 =

∑n
i=1 |xi| (Manhattan)

▶ ∥x∥2 =
√∑n

i=1 |xi|2 (Euclidean)
▶ ∥x∥∞ = max (|x1|, . . ., |xn|)
▶ More generally we define the norm ∥.∥p for all integers p as

∥x∥p =
(

n∑
i=1

|xi|p
)1/p

.
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Mathematical Background and Recall

Example 1/2

We will show that the Euclidean norm is a true norm. Let x, y ∈ Rn and
λ ∈ R then

1. It is obvious that ∥x∥2 =
√∑n

i=1 |xi|2 is positive.
2. As |xi|2 ≥ 0 then

∑n
i=1 |xi|2 = 0 if and only if ∀i, xi = 0

3. Finally,

∥λx∥2 =

√√√√ n∑
i=1

|λxi|2

=

√√√√ n∑
i=1

|λ|2|xi|2

= |λ|

√√√√ n∑
i=1

|xi|2.
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Mathematical Background and Recall

Example 2/2

To prove the last point we will use the Cauchy-Schwartz Inequality :

⟨x, y⟩ ≤ ∥x∥∥y∥.

We have,

∥x + y∥2
2 = ∥x∥2

2 + 2⟨x, y⟩ + ∥y∥2
2

≤ ∥x∥2
2 + 2∥x∥2∥y∥2 + ∥y∥2

2

≤ (∥x∥2 + ∥y∥2)2
.

By taking the square root, which is an increasing function, we get the
result.
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Mathematical Background and Recall

Norms and Unit Ball

Unit ball for the norms ∥∥p for p = 1, 2 and p > 2

Exercise
1. Represent the unit ball for the norm ∥.∥∞.
2. Show that ∥x∥1 =

∑n
i=1 |xi| is a norm.
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Mathematical Background and Recall

Correction

• The Unit Ball using the ∥.∥∞ is a full square.
• We have to check the four points of the definition.

1. ∥x∥1 =
∑n

i=1 |xi| ≥ 0 by definition of the absolute value.
2. ∥x∥1 =

∑n
i=1 |xi| ≥ 0 =⇒ x = 0 because the sum of positive

numbers is equal to zero if and only if all the terms are equal to zero.
3. ∥λx∥1 =

∑n
i=1 |λxi| = |λ|

∑n
i=1 |xi| = |λ|∥x∥1.

4. ∥x + y∥1 =
∑n

i=1 |xi + yi| ≤
∑n

i=1 |xi| +
∑n

i=1 |yi| = ∥x∥1 + ∥y∥1.
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Mathematical Background and Recall

Norms on matrices

It is also to define an inner product and a norms on matrices :
1. Given two matrices X, Y ∈ Rm×n the inner product is defined by :

⟨X, Y ⟩ = Tr
(
XT Y

)
=

m∑
i=1

n∑
j=1

xijyij .

2. A classical norm used with matrices is the Frobenius norm :

∥X∥F =
√

Tr (XT X) =

 m∑
i=1

n∑
j=1

x2
ij

1/2

.

What is the inner product of the symmetric matrices X, Y ∈ Sn(R) ?
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Mathematical Background and Recall

Convex Sets

Definition
A set C is said to be convex if, for every (u, v) ∈ C and for all t ∈ [0, 1]
we have :

tu + (1 − t)v ∈ C.

In other words, C is said to be convex if every point on the segment
connecting u and v is in the set.

Proposition
Let (u1, u2, . . ., un) be a set of n points belonging to a convex set C.
Then for every reel numbers λ1, λ2, . . ., λn such that

∑n
i=1 λi = 1 :

v =
n∑

i=1
λiui ∈ C.

Every convex combination of points in a convex set is in the convex set.
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Mathematical Background and Recall

Convex Sets

Which of the sets are convex ?
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Mathematical Background and Recall

Examples of Convex Sets

1. B = {u ∈ Rn | ∥u∥ ≤ 1} is convex.
2. Every segment in R is convex.
3. Every hyperplane {x ∈ Rn | aT x = b} is convex.
4. If C1 and C2 are two convex sets, then the intersection C = C1 ∩ C2

is also convex.

Exercise
1. Prove that the Euclidean Unit Ball is convex.
2. (At home) Prove that a set A is convex if and only if its intersection

with any line is convex.
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Mathematical Background and Recall

Correction

• For the first point, consider λ ∈ [0, 1] and u, v two vectors in the unit
ball. Then set z = λu + (1 − λ)v. (i) take the norm of z, (ii) apply the
triangle inequality and (iii) the scalability of the norm.
• Use the definition of convexity
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Mathematical Background and Recall

Derivative for real functions

Recall
Let f : R → R be continuous and x0 ∈ R. We say that f is differentiable
at x0 if the limit :

lim
h→0

f(x0 + h) − f(x0)
h

,

exists and is finite.

If f is continuously differentiable at x0, so for h ≃ 0 we have

f(x0 + h) = f(x0) + hf ′(x0) + ε(h).

This formula (Taylor’s Formula) can be generalized to a function g
n-times continuously differentiable :

f(x0 + h) = f(x0) +
n∑

i=1

h(i)

i! f (i)(x0) + ε(hn).
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Mathematical Background and Recall

First order derivative

Definition
Let f : Rm → Rn be a C0 application and x ∈ Rm. Then f is
differentiable at x0 if it exists J ∈ Rm×n such that :

lim
x→x0

∥f(x) − f(x0) − Jf(x0)(x − x0)∥
∥x − x0∥

= 0.

D is called the Jacobian of the application f .

For all i, j the elements of the matrix J are given by :

Jijf(x0) = ∂fi(x)
∂xj

∣∣∣∣
x=x0
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Mathematical Background and Recall

First order derivative

Remark
Usually f : Rm → R so the Jacobian of the application f (also called the
gradient) will be a vector ∇f(x0)

The gradient gives the possibility to approximate the function near the
point its gradient is calculated. For all x ∈ V (x0) we have

f(x) ≃ f(x0) + ∇f(x0)(x − x0)

This affine approximation of the function f will help us to
characterize convex functions.
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First order derivative : example

Let us consider a function f : R3 → R defined by

f(x, y, z) = 3x2 + 2xyz + 6z + 5yz + 9xz.

We want to calculate the Jacobian of this function. To do so, we need to
calculate : ∂f

∂x
, ∂f

∂y
, ∂f

∂z
. The Jacobian of f at (x, y, z) is given by :

Jf(x,y,z) =
(

6x + 2yz + 9z, 2xz + 5z 2xy + 6 + 5y + 9x
)
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Mathematical Background and Recall

First order derivative

Exercise
1. Let x, y, z ∈ Rn. Calculate the Jacobian of the function

f(x, y, z) = exp(xyz) + x2 + y + log(z).

2. Linear Regression. Let Y ∈ Rn, X ∈ Rn×d and β ∈ Rd.
Calculate the derivative of the function

f(β) = ∥Y − Xβ∥2
2

3. Log-Sum-Exp. Let x, b ∈ Rn. Calculate the derivative of the function

f(x) = log
n∑

i=1
exp (xi + bi)
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Mathematical Background and Recall

Correction

• You simply have to apply the definition as it we have done in the
previous example and you will have :

∇f(x, y, z) =
(

yz exp(xyz) + 2x, xz exp(xyz) + 1, xy exp(xyz) + 1
z

)
.

• Here, you have to use the face that : ∥x∥2 = ⟨x, x⟩. Then you
compute the derivative using the fact that f is defined as a product of
two functions of β.

∇f(β) = −XT (Y − Xβ) + ((Y − Xβ)T (−X))T = −2XT (Y − Xβ).

• Remember that the Jacobian ∇f = Jf is a vector where each entry i
is equal to :

∇f(x)i = exp(xi + bi)∑n
i=1 exp(xi + bi)

.
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Second order derivative

Definition
Let f : Rm → R be a real function. Provided that this function is twice
diffentiable, the second derivative H, (also called the Hessian)of f at x0
is given by :

Hijf(x0) = ∂2f(x)
∂xi∂xj

∣∣∣∣
x=x0

,

and H ∈ Rm×m

Hessian is useful to prove that a function f is convex or not and also
to build efficient algorithms.
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Second order derivative : example

Let us consider the function f : R2 → R defined by

f(x, y) = 4x2 + 6y2 + 3xy + 2 (cos(x) + sin(y))

and calculate the Hessian of this function. We first have to calculate the
Jacobian of the matrix and then the Hessian.

Jf(x,y) =
(

∂f

∂x

∂f

∂y

)
=
(

8x + 3y − 2 sin(x) 12y + 3x + 2 cos(y)
)

Hf(x,y) =


∂2f

∂2x

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂2y

 =
(

8 − 2 cos(x) 3
3 12 − 2 sin(y)

)
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Second order derivative : example

Exercise
Calculate the second order derivative of the following functions :

• f(x, y) = log(x + y) + x2 + 2y + 4

• f(x, y, z) = 6x

1 + y
+ exp(xy) + z
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Correction

The process is similar as in the previous example, so I only give the
results.

Hf(x,y) =


∂2f

∂2x

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂2y

 =

 2 − 1
(x + y)2 − 1

(x + y)2

− 1
(x + y)2 − 1

(x + y)2



Hf(x,y) =


y2 exp(xy) − 6

(1 + y)2 + (xy + 1) exp(xy) 0

− 6
(1 + y)2 + (xy + 1) exp(xy) 12x

(1 + y)3 + x2 exp(xy) 0

0 0 0


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